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The impact of ignoring the stratification effect on the prob-
ability of a Type L error is investigated. The evaluationisin
a clinical setting where the treatments may have different
response rates among the strata. Deviation from the nom-
inal probability of a Type I error, «, depends on the strat-
ification imbalance and the heterogeneity in the response
rates; it appears that the latter has a larger impact. The
probability of a Type I error is depicted for cases in which
the heterogeneity in the response rate is present but there
is no stratification imbalance. Three-dimensional graphs
are used to demonstrate the simultaneous impact of hetero-
geneity in response rates and of stratification imbalance.
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1. INTRODUCTION

Safety and efficacy of a treatment are the most impor-
tant issues in any clinical trial. Often, other factors such
as gender, stage of disease, etc., are taken into account as
part of the trial design. If these factors are not incorpo-
rated in the protocol at the design stage, their impact on
the Type I error rate may mask the findings of the trial by
causing a false positive rate different than the nominal «.
This stems from the fact that treatments may not have the
same response rate in different patient groups such as those
formed by gender, stage of disease, race, etc. For exam-
ple, in an AIDS clinical trial, the rates of adverse events
of an antiretroviral treatment, AZT, are different among
the HIV-infected individuals who have reached the AIDS
stage compared to those who are in the AIDS-related com-
plex stage (McLeod and Hammer 1992). Or in a hyper-
tension study it is known that the effect of a beta blocker, a
treatment to reduce blood pressure, is different in elderly
compared to young patients (Neutel, Smith, Lefkowitz,
Kazempour, and Weber 1993).

In clinical trials, stratification and randomization are
used to distribute the controlled and uncontrolled factors
evenly among the treatment groups. Itis common to apply
a statistical test (although there is some argument against
its use) to compare the distribution of the important charac-
teristics of different treatment groups before the initiation
of treatment, i.e., baseline. The baseline characteristics
can be discrete, e.g., race, gender, or continuous, €.g.,
weight, blood pressure. Those characteristics that are dis-
crete may be used as stratification factors; those that are
continuous may be used as covariates or pretest values.
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Probability of Type I Error

Brogan and Kunter (1980) compared different methods
for “Pretest—Posttest” for case in which the baseline vari-
ables are continuous variables. They recommended that
investigators choose the method of analysis based on the
objective(s) of the trial; their preferred method was the
repeated-measure/split-plot analysis over the ¢ test. Laird
(1983) proposed an alternative method for analyzing ran-
domized studies with covariates and demonstrated that the
results are identical to the ordinary analysis of covariance
when the pretest is used as the covariate. For discussion
opposing the pretesting strategy, see, for example, Permutt
(1990), Senn (1989), and Altman (1985). Permutt (1990)
showed that pretesting for imbalance of baseline values
affects the final probability of Type I error and results in
a significance level lower than the nominal level. Altman
(1985) suggested that comparability of prognostic factors
should be evaluated partly on the basis of clinical knowl-
edge. He showed that a nonsignificant imbalance in an
important covariate may exert an impact on the final re-
sult. Senn (1989) showed the effect of baseline imbalance
on the Type I error rates. For continuous variable, Senn
has proposed a procedure to assess the effect of baseline
covariates on the probability of Type I error.

In this article we look at discrete characteristics (strati-
fication), and we use a method similar to Senn’s (1989) to
investigate the impact of ignoring the stratification factor
on the probability of a Type I error. In the next section
we describe the problem, our approach, and the notation.
The impact of different response rates in different strata
and the stratification imbalance are explained in Section 3.
The discussion and conclusion are presented in Section 4.

2. DERIVATION AND NOTATION

In a clinical trial that compares the effect of two treat-
ments, assume that there are two strata, and n subjects
are assigned to each treatment group. Also assume that
for the binary response of interest, the response rates
may not be the same in both strata within each treatment
group. The following 2 x 2 tables display the true re-
sponse rates, the sample allocations, and the observed re-
sponse frequencies. The proportion of patients from the
ith treatment group that are in the first stratum is denoted
by f;; i = 1, 2. This quantity is assumed fixed in all deriva-
tions. The main objective is to compare the response rates
of two treatment groups. (See the top of p. 171.)

Let R; be the true response rate of the ith treatment
group; then

Ri=fi0+(1—f)¢
Ry =£,(6 — 8)+ (1 = fo)(¢ — 6).

Then
Ri = (X + Xa)/n
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is an unbiased estimator of the ith treatment’s response
rate, and

D= R1 - Tez
is an unbiased estimator of their difference, R, — R,. The
first two moments of this difference are

ED)=Ri — R = (0 -~ D) (fi —f) +6,
V(D)= V(R) +VR)

=L -0+ @i~ o0 - 9)
+26(£0 + (1 — 1)) — (6 + 67)].

Under the null hypothesis that these two treatments have
t/l}e same effect; that is, Hy: § = 0, the second moment of
D is obtained by setting § = 0 in the above variance. We
refer to this as the true variance and denote it by V.

If the stratification effect is ignored, the variance of the
overall difference in rates, D given 6§ = 0 is calculated as

Vc = zﬁ(l _l_7)
n
where
ﬁ=ﬁ;ﬁ0+<1_ﬁ;ﬁ)¢

Note that in practice, § and ¢ are not known, and they
are replaced with proper estimates based on the observed
responses. In this paper we are using the true values of
g and ¢. To evaluate the probability of false rejection,
the normal approximation to the binomial distribution is
employed. Using this approach in a one-sided test, the
hypothesis of no difference in the response rates between
treatment groups is rejected if

D>2ZVV, (1)

where Z, is the (1 — «) percentile from a standard nor-
mal table; V is the variance that is either the calculated
variance, V¢, or the true variance, Vp; the effect of this
difference is studied in this article. The impact of using
the calculated variance rather than the true variance on the
probability of false rejection depends on the stratification
imbalance and the response rates in different strata.

The Normal approximation to the conditional probabil-
ity of falsely rejecting the null hypothesis in the case that

fi=fi=fis
PO > Zo Ve, ) =1 = ®(Zo/Ve/[Vo),  (2)

where

!
1
() = / 27re-%xzdx.

For the case where f; and f; are not equal, the calculated
probability of a Type I error is

P(D > Zo/Ve; fis 1)
=1 — ®(Zar/Ve/Vo — (fi =)0 — $)/V Vo). (3)

Itis obvious from Equations (2) and (3) that the probability
of false rejection is affected by the response rates as well as
the proportions, f;; these impacts are depicted in Figures
1 and 2, respectively. In these figures the values for ¢ are
fixed, and the values for # range from O to ¢; the values
for f; are also fixed, and the values of f; range from O to
fi. The nominal probability of Type I error « is set at .05.
In the next section the impact of different values of these
parameters is evaluated.

3. IMPACT OF THE PARAMETERS

The Type I error rate is affected by 8, ¢, fi, and f;.
To evaluate this effect, we examine the following three
scenarios:

) 0/¢=1
2) 8/¢<1, and f/fi=1
3) 0/p<1, and f/fi <1

Under the first scenario there is no impact on the probabil-
ity of Type I error. This is expected because the response
rates in both strata are the same. If we assume f; =f, =f
and 6/¢ < 1, the second scenario, then the Type I error
rate is affected. The size of this effect depends on the val-
ues of f, the number of patients in each cell relative to the
total number of patients in each treatment group, and the
size of ¢.

Figure 1 depicts these effects for four different sets of
values of f and ¢. Note that there is no imbalance between
the treatment groups, fi = f2; the only difference is the
response rates between the strata within each treatment
group. The values of ¢ are displayed on the top of the
left corner of the boxes. The values for 6 are chosen as
fractions of ¢. The Y axes are the probability of Type I
error conditioned on the proportions, f. The X axes are
1 — (6/¢). When X = 0, the response rates in both strata
are the same; that s, § = ¢. Therefore, the calculated Type
I error rates are the same as the nominal values. The Type
1 error rates obtained from Equation (2) are, in general,
less than the nominal values, so the tests are conservative.

The line parallel to the X axis in Figure lais for f = 1
(i.e., no stratification). This line displays that the nominal
« is the same as the calculated probability of Type I error
for ¢ = .9. The same results are displayed for other values
of ¢ in Figure 1b—d. When f is not 1, the difference be-
tween the nominal o (.05) and the calculated probability
of false rejection is more pronounced in Figure la than
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Figure 1. Depicting the Impact of Heterogeneity in Response Rates in Strata on Type | Error Rate. Four different fixed values for ¢, response
rate, are used. The x axis is 1 — 8/¢. The proportion of participants in strata are equal, f = f, = f; in each box five different values of f are
displayed. (a) The response rate ¢ is .9, and the 8 ranges from 0 to .9. (b) The response rate in one stratum is .7, and for the other stratum
ranges from 010.7. (c) The response rate in one stratum is .5, and for the other stratum ranges from 0 to .5. (d} The response rate in one stratum

is .1, and for the other stratum ranges from 0 to .1.

Figure 1b—d. This is because the largest difference be-
tween ¢ and 6 can be observed in Figure 1a. In Figure 1d
the largest value that 8 or ¢ can have is .1. Therefore ¢ — 6
cannot be greater than .1; this small difference has little
effect on the Type I error rate.

Figure 2 demonstrates the third scenario. If both the
response rates and the proportion rates are different, the
statistical tests are the most affected. In this scenario Type
I error rate is affected from two sources: (1) E(D | Hp) #
0, and (2) V¢ # Vo. In this article we used the unbiased
estimator D to demonstrate the impact of stratification im-
balance; this estimator is not an unbiased estimator of zero
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under the null hypothesis for this scenario. One might use
a different estimator that may not be unbiased, but is an
unbiased estimator of zero under the null hypothesis. This
will be addressed in the next section.

The effects of simultaneous changes in ¢ and f; are
depicted in four three-dimensional graphs for four sets of
(¢, f1). The Z axes in Figure 2a—d are the conditional
probability of Type I error. In Figure 2 the X axes are
the ratios of the proportions, f>/fi. The values of f; are
displayed on the top of the left corner of the boxes. The
values of f; are calculated as fractions of f;. The Y axesin
these figures are the ratios of the response rates, f/¢. The
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Figure 2. Depicting the Impact of Imbalance in the Stratification Factor and Heterogeneity in the Response Rates. The largest proportion
rate, f;, and the response rate, ¢, are displayed on the top of the left corner of each box. (a) ¢ is .9, and 6 ranges from 0 to .9; f, is .9, and 1,
ranges from 0 to .9. (b) ¢ is .5, and 8 ranges from 0 to .5; f; is .9, and f, ranges from 0 to .9. (¢} ¢ is .9, and @ ranges from 0 to .9; f, is .5, and f;
ranges from 0 to .5. (d) ¢ is .5, and 6 ranges from 0 to .5; f, is .9, and f; ranges from 0 to .9.

values for ¢ are displayed next to the f; values for each
figure, and the values of @ range from O to ¢. When 8 = ¢
the nominal « is the same as the calculated probability of
false rejection, regardless of the values of f; and £,. When
fi =f> and the 6 and ¢ are different, the Type I error rate is
less than the nominal value. This is what we observed in
Figure 1. It is clear from Figure 2 that the Type I error is
more sensitive to the dispersion in the response rates than
the imbalance of the stratification.

4. DISCUSSION AND CONCLUSION

When stratification is ignored, dispersion of response
rates in a heterogenous population will affect the Type

I error rate. This effect can be large, and it should be
assessed and addressed. The statistical tests will become
more conservative if the response rates in different strata
are far apart; this is true even if there is no stratification
imbalance. For an extreme case where ¢ = 1 and 8 = 0
with f; = f = .5, the variance of R will be .5(1 — .5)/n;
however, R, is always equal to .5 and the true variance is 0.

From Figure 1 it can be observed that, although the at-
tributes are evenly distributed between the two treatment
groups, the tests are affected and they are conservative.
This, indirectly, supports the argument that pretesting the
baseline characteristics is not the most appropriate method
to assess and to remove the effect of the stratification
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imbalance. The appropriate approach is to control for
important stratification factors in the planning stage, and
use the stratification factor in the analysis, even if there is
no stratification imbalance.

The cases that we have investigated in this paper are
small subsets of all possible cases that one could evaluate.
In this article we have used D, which is an unbiased es-
timator of Ry — R,. This is not an unbiased estimator of
zero under the null hypothesis in the third scenario. One
could use an alternative estimator such as D, such that
E(D' | Hp) = 0, where

D' =[(fi +£)/21u/nfy — Xiz/nf)
+[1 - (i +£2)/21(X21 /n(1 — fi) — X2 /n(1 — £5)).

Other cases of practical interest are: (1) the response rates
of the two strata are the same in one treatment group
but they are different in the other treatment group, and
(2) the response rates of one stratum in both treatment
groups are equal but the response rates of the other stra-
tum are different. In this study the normal approxima-
tion procedure is employed to calculate the probability
of Type I error; the exact binomial distribution is an al-
ternative. The sample sizes in two treatment groups are
assumed equal in this article; a difference in the sample
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sizes in each treatment group might add another layer of
complexity. The dispersion in the sample sizes is espe-
cially important when the sample sizes are small. This
can be evaluated when the exact binomial distribution is
used.

[Received March 1993. Revised October 1994.]

REFERENCES

Altman, D. G. (1985), “Comparability of Randomized Groups,” The
Statistician, 34, 125-136.

Brogan, D. R., and Kunter, M. H. (1980), “Comparative Analyses of
Pretest-Posttest Research Designs,” The American Statistician, 34,
229-232.

Laird, N. (1983), “Further Comparative Analyses of Pretest—Posttest
Research Designs,” The American Statistician, 37, 329-330.

McLeod, G. X., and Hammer S. M. (1992), “Zidovudine: Five Years
Later,” Annals of Internal Medicine, 117, 484-501.

Neutel, J., Smith, D., Lefkowitz, M., Kazempour, M. K., and Weber, M.
(1991), “Whole-Day Blood Pressure Monitoring in Assessing Effi-
cacy of Anti Hypertensive Agents in Population Subgroups,” Clinical
Research, 39(3), 683A, 749A.

Permutt, T. J. (1990), “Testing for Imbalance of Covariates in Controlled
Experiments,” Statistics in Medicine, 9, 1455-1462.

Senn, S. J. (1989), “Covariate Imbalance and Random Allocation in
Clinical Trials,” Statistics in Medicine, 8, 467-475.



