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advice to simplify and clarify -- so that any shortcomings that remain do so
despite their best efforts.

Finally, we would like to acknowledge the financial assistance of SAS,
Institute Inc., whose generous contribution has helped defray the cost of
printing and distributing the Guide.




by Bertan Gunter
Statistical Consultant

Do you remember the last time you saw sameone whom you recognized but whose
name you forgot? The face was so familiar but the name ... you just couldn't
quite recall it.

Or if you have lived scmewhere else and haven't been back to your former
hame for a while, try to write down directions to tell sameone how to get from
your former house or apartment to the supermarket, drugstore, or same other
familiar destination. Can you remember all the street names or the number of
lights to pass before making turns? Probably not. Nonetheless, if you were
suddenly transported to that home and were told to walk,bicycle, or drive the
route, you'd probably have no problem finding your way.

Go 2.3 mies Yo
Linden, tum right and.
continue 10 the 3rd. stophaht
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Both of these examples illustrate a peruliar fact: even though it requires
far less information to write down the name or the directions than to describe
the face or the route, we remember the camplex pictures and forget the simple
words and numerals. This demonstrates a fundamental truth about the human
animal =-- our brains are wired for pattern recognition, not for symbolic
processing. Fram the time we first greet the world and soon after recognize
good old Mam, to the numerous images of people, places, and events that we

' store as we grow older, we tend to learn and process information as pictures
(and sounds, and smells, and touches, and tastes). Numbers and words have
their place =-- as this introduction demonstrates —— but the way to really
understand and camunicate understanding is with pictures.

Of course, this is hardly a new idea, but only rather recently have people
fully recognized its consequences for analyzing and cammnicating about data.
Science and mathematics have long relied upon pictures and graphs, as a quick
glance at practically any science or math textbook will show. But only within
the past 20 to 30 years has statistics — which is concernmed with how best to
acquire, understand, and cammnicate about data -— broadly recognized how
important and effective graphics can be in data analysis.

This Guide is being published under the auspices of the Statistical
Graphics Section of the American Statistical Association (ASA). It aims to
introduce readers with no special knowledge of either statistics or graphics
to same of the new and exciting ideas in this growing field. When most people
think of statistics, visions of numbers and formilas came dancing into their
heads. We hope that, after reading this Guide, graphs and pictures will frolic
alongside.




We also hope that nearly everyone will find useful and interesting ideas in
this booklet. We live in a world overflowing with data: economic and financial
reports, political surveys, health and envirommental studies, sports
statistics, TV ratings, standardized test scores, and population projections
are just a few of the "numbers games" that appear in the popular media every
day. Graphics can help makes sense of these data.

Think about it. In 1800, most people only needed to know about farming to
be good citizens. Only a few lawyers and politicians needed to know the
"fancy" skills of reading and writing -- literacy. By 1900, literacy was
essential for all, but only a few scientists or census takers needed to know
anything about how to gather data and understand what they meant. How that
situation has changed! As we approach the year 2000, we find ourselves
swimming in a sea of mumbers, fed and organized by one of mankind's greatest
technological inventions, the digital computer. From choosing health foods and
cosmetics, to purchasing a house, to choosing a career, to casting our vote,
we confront data full of facts, fallacies, exaggerations, and confusion to
help "guide" our choices. Clearly, in such an envirormment, we need a new kind
of quantitative literacy to make sense of it all. The concepts and techniques
of statistical graphics are an invaluable part of this quantitative literacy.

This Guide presents both underlying concepts and some specific graphical
techniques. We have also included a short annotated bibliography for those who
wish to learn more. The organization is as follows:

Chapter 1 gives an overview of same of the basic ideas underlying statistical
graphics. The main theme is to answer the following question: what makes a
good graph good and a bad graph bad? It turns out that this is not such a
simple question to answer, and readers will discover that much —- maybe most-
- of the graphics that one finds in popular media these days is pretty awful.

Chapter 2 provides some simple statistical graphical tools that students can
use. Many of these ideas follow the examples of the National Council of
Teachers of Mathematics/ASA joint Quantitative Literacy Series publications,
so readers familar with these materials should find some old friends.

Chapter 3 introduces some more sophisticated —- but still very useful -- ideas
and the essential role of the computer in implementing them. Even though
statistical graphics changes our focus from numerics to patterns, we need the
power of the computer in order to easily produce and manipulate these
patterns.

We have tried to present the material clearly, relying on graphics and
examples to demonstrate the ideas and avoiding numeric or algebraic
manipulation. We hope that readers will find this fun to read as well as
informative. But the proof of the pudding comes in the eating: we especially
etlcamagereaderstogocnxtandtrytheideasondatainwhichyouare
interested.

WecanaJnostguaranteetlmtym'llbemzedbywhatymseearﬂbythe
effect it has on what you believe.




CHAPTER 1
PRINCIPLES OF GOOD GRAPHICAL DISPLAY

by Kazem Kazempour and Panl Samerville
University of Central Florida

Purposes and Message of a Statistical Graph

The purpose of statistical analysis is to draw conclusions from data. It
converts the information in numbers into knowledge on which to base decisions.
The decisions can range from which car to buy, to what interest policy is
better for the national economy; from how many compact disks to produce for a
new release, to predicting world population growth and agricultural needs;
from determining the effectiveness and risks of a new drug, to deciding
whether buildup of carbon dioxide in the atmosphere requires new world energy
policies.

In today's world, the scientific method is used to investigate practically
all questions of interest. What this means is that unsupported theories are
not acceptable as a means to understand natural and/or social (political,
economic, etc.) phenomena. Studies and experiments must be conducted to
collect hard data. Theories and explanations that the data support are useful;
those that the data contradict must be abandoned. Understanding such data
always involves some sort of statistical analysis. For this reason, statistics
is sametimes referred to as "the lanquage of science."

Sametimes, statistical analysis requires nothing more than looking at a few
numbers and drawing the obvious conclusions. But this is rare. More often than
not, boththegg_ngtyofthedataandthepresenceofvariabiligy make it
difficult or impossible to determine much useful Jjust by looking at the
numbers (by variability, we mean measurement errors, systematic errors in
sampling, experimental error, difficulties in getting reliable information,
fuzziness of people's attitides and opinions, and so forth).

Statistical graphs are visual interpretations of data and information. As
we noted in the introduction, the human brain is adept at identifying and
interpreting patterns. Tables of data and numerical summaries present
information, but because they are not in a form that the brain can readily
deal with, understanding that information can be a problem. Moreover, a list
of numbers is boring! A good graph avoids these problems and is both
informative and appealing: the important information leaps out and grabs you.

The most important function of a graph is to summarize and meaningfully
display the information in a table of numbers in the simplest and most useful
way possible. Not only does this make comprehension easier, but it also helps
both novice and expert viewer to remember the message longer.
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There are many ways to graph data. In this Guide, we shall show you a few
simple techniques, but the variety of approaches is really endless.
The guiding principle is: use whatever works. However, beware! —- there are no
methods that work well in all applications. Methods that do well in one
situation may be inappropriate for another. Before choosing any particular
approach, you usually should try several in order to determine what the data
have to say. Once you have decided what the main message(s) is, you can then
choose the best method to convey it. Even so, several iterations of trying out
a graph, examining it, editing it and trying out a modified version will
probably be necessary before producing a final version.

Importance of Scaling

Scale is an essential part of any meaningful statistical graph. It is the
ruler along which the data are displayed and campared. One of the most cammon
errors in statistical graphs is to deliberately or unintentionally distort
results by improper scaling. Following are two pairs of graphs, each pair
portraying the same data set with the only difference being the scaling.

FIGURE 1.1
(a) GOVT. PaY ﬂﬂl.lis URt i GOVT PAY ROLLS STABLE!
(b)
o ']
40
30
20 5
[0
B ) . A

Figure 1.1(a) from How to Lie with Statistics by Darrell Huff, p.é65. Reprinted
by permission of W.W. Norton & Company, Copyright @ 1954 and renewed 1982 by
Darrell Huff and Irving Geis,

Figure 1.1(b) from The Designer’s Guide to Creating Charts and Diagrams by

Nigel Holmes, p.167. Reprinted by permission of Watson-Guptill Publications.
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Notice how the scale affects your conclusions. In Figure 1l.la, the
$800,000 increase (about 4%) can be hidden by extending the vertical scale to
cover a range of $30,000,000 instead of about $1,000,000. In Figure 1l.1b, by
splitting the graph in half, putting a break in the vertical scale of the
righthand part, and then using a different scale (each division equals 10 for
D,E,F, and only 5 for A,B,C) it looks like A,B,and C are of the same size as
D,E, and F. Such unscrupulous use of scales can give a bad name to statistics
and graphics. However, such shenanigans make an important point: insofar as
possible, the visual appearance of a graph should accurately reflect the
numerical content. Clearly, the distortion in Figure 1.1b is caused by
rescaling that forces the visual message (the heights of the bars from a
common baseline) to contradict the data. For this reason, it is important
always to carefully examine and understand the scaling when looking at a graph
and to choose scaling carefully when making one.

Figure 1l.la illustrates another problem that must be considered in choosing
scales: the use of absolute value vs. percentage. Take a look at this pair of
graphs again. The lefthand graph emphasizes that after several months of
little absolute change, there has been a rapid absolute increase in payrolls.
The righthand graph illustrates that on a relative (percentage) scale, the
change hasn't been that great. Which is correct? -- It depends on the context,
but the producer and consumers of this graph must be clear about what they
wish to emphasize.

It is even possible for a particular measurement to go up in absolute value
but down relative to the overall value. It may well be necessary to present
graphs for both relative and absolute differences in this case in order not to
mislead. For example, consider the following two graphs. One is the
percentage change and the other the absolute change in malnutrition in
developing nations. What the graphs show together is that while the relative
amount of malnutrition declined between the two periods shown (27% to 21.5%),
the actual number of malnourished people increased (fram 460 to 512 million).
Of course, the reason that this could happen is that the baseline, the total
population, greatly increased between the two periods, so that there were many
more pecple around. Portraying either graph alone would probably have been
misleading; both are needed to tell the whole story.

In choosing scales for a graph of data, two principles should be generally
followed. First, the range on the graph should include all of the data.
Second, the data should fill in almost all the graph area. For example, if
all data are in the range between 5 and 180, the scale on the graph should be
such that 5 is near the left hand edge and 180 is near the right hand edge.
The usual procedure is to find the two extremes of the data (say xmin and
xmax) and to use a scale for the graph such that the largest and smallest
numbers on the axis are "convenient" numbers which contain xmin and xmax. The
space between the extremes is then marked off into equal intervals. For
example, the axis might be partitioned into 8 intervals of 25 ranging fram 0
to 200. The number of segments should not be too large (crowded) or small
(sparse) .




FIGORE 1.2

More Than One Graph May Be Necessary to Properly Convey the Information

Malnutrition
In Developing
Nations
The percentage of
population that is
malnourished has

dropped, but actual
numbers have climbed

g
1969-71 1983-85
Source: UN Population Fund

;
1969-71 1983-85

“Malnutrition in Developing Nations" by David C. Walters, 5/15/90. Reprinted
by permission from the Christian Science Monitor. Copyright @ 1990 The
Christian Science Publishing Society. All Rights Reserved.

In the case where one or a very few values is an outlier (i.e. is greatly
separated fram the rest of the data), it is often best to make the graph with
that value excluded and separately indicated. This is in line with principle
2: including the outlier would leave too much white space in the graph.

If the smallest value of a data set, xmin, is very far from zero, zero
should be excluded fram the scale in order to provide good resolution/detail
(following principle 1). Same people think that excluding zero fram the scale
is a dishonest way of presenting data. However, it is almost always wiser not
to sacrifice good resolution in order to include one specific value (zero) or
same outliers. Of course, if points are excluded, this fact and their

specific values should be clearly noted so that the viewer is made aware of
tllis.

In practice, we often encounter data that are scattered unevenly over a
very wide range of values but with a large proportion of the values near the
lower end. Consequently, as x increases, the data became sparser and sparser.
Here we have a definite pattern, not just a few unusual observations. Often, a
way to improve such a graph is to "transform" the data. This is equivalent to
using nonlinear scales. '




If the x values are all positive, transforming the data by using the
logarithm of the x value rather than the actual value can greatly improve the
appearance of the graph. One should make sure that the viewer is aware that
the graph represents transformed values, and of the type of transformation
(e.g. logarithmic) used. Figure 1.3 is an example. It gives average percents
of 14 camon elements in stony meteorites. Note that each increase of 1 on the
log, scale represents a doubling of the percentage of iron.

FIGIRE 1.3
Plotting the Data on a Log Scale Can Provide More Information
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From The Elements of Graphing Data, by W.S. Cleveland, pp. 84-85. Reprinted by
permission.




There are many other ways to transform scales in order to improve both
appearance and camprehension of graphs. For example, even if the data are not
all positive, one can first add a constant and then take logarithms. Other
transformations (e.g., square root, reciprocal, "logit", rank, percentile) are
all often useful, but beyond the scope of what we can discuss here. Readers
may wish to consult same of the references for further ideas.

If it is desired to make camparisons between data on two separate graphs,
then the scaling for the two graphs must be as alike as possible, even when
this slightly violates principles (1) and (2). The graphs below are used to
illustrate the results of a study to determine the difference in average
absolute errors people made in interpreting pie vs. bar charts. At first
glance, it looks like graph (b) did not make good use of the space: the
largest value in the vertical axis is near 8 but the range for the y axis is
14. However, this is justified, because the purpose is comparing two graphs
and the scales should be the same to facilitate the camparison.

First of all, a graph must be honest!

FIGURE 1.4

Extra White Space is OK When it is Needed to Maintain Scales far Comparisons

Pie Chart Average Absolute Error
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From The Elements of Graphing Data by W.S. Cleveland, p.205. Reprinted by
permission



Simplicity of Grag

Graphs should be simple and uncluttered. Elements that draw attention away
from the main message of the graph should be eliminated. If no information or
clarity is lost by removing same "ink", do not hesitate to remove it.
Irrelevant decorative elements distract the viewer fram the information the
graph conveys and should be avoided.

Some people believe that statistical graphs must be "live",
"cammunicatively dynamic®, and heavily decorated and embellished. Perhaps
this notion has stemmed fram the fact that statistics --meaning tables of
numbers -- are perceived to be dry and boring. Many corporate annual reports,
govermment charts, and popular publications contain graphs that have been so
profusely decorated that it is actually hard to see the information portrayed
in the graph. 1In addition, scmetimes the embellishments (intentionally or
not) cause deception and/or distortion of the data. Here are a couple of
examples.

FIGURE 1.5

o' 60,000

B /] 2D D00
|

0,000

0
r—--

e $30,000

$20,000

1 . I
1978 1979 1980 1981 1982

TIME Charl by Nigel Hoimes

Source: The Diamond Registry
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RISING GAP

Japanese trade in
billions of dollars

From The Designer’s Guide to Creating Charts and Diagrams by Nigel Holmes,
pPp.32 and 116. Reprinted by permission of Watson-Guptill Publications.

Good graphs demand the minimum possible effort of the viewer to in
the information. The artistic effects in Figures 1.5a and b) add to the effort

of understanding by forcing the reader to extract the graphic from the
background visual clutter.

It is possible to decorate a graph without distorting the data, however.
The graphs that follow are two examples. Note that in both cases the data part
of the graphic is clearly separated from the decoration (in Figure l.6a, by
keeping the decoration outside the graph area; in 1.6b, by making the graph
stand out in black from the gray envelope). This allows the viewer to focus on
the information without difficulty.

=il -




FIGURE 1.6

Decarating a Graph Without Obscuring the Information
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l.6a from The Visual Display of OQuantitative Information by E. Tufte.
Reprinted by permission of the author.

1.6b by Elizabeth Ross from the 4/16/90 christian Science Monitor. Reprinted
by permission from The Christian Science Monitor Copyright () 1990 The
Christian Science Publishing Society. all rights reserved.
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Adding unnecessary extra dimensions to a graph is one of the most cammon
ways of distorting the information portrayed. Here are examples.

The graph in Figure 1.7a depicts the shrinking value of the dollar.
However, the perception of the shrinkage far exceeds the actual shrinkage,
because the dollar bill is shown in two dimensions, and each dimension is
reduced. Howard Wainer, a keen and amsing chronicler of such graphical
distortion (see his article, "How to Display Data Badly", listed in the
references), has called this "squaring the eyeball to goose up the effect." A
reduction by one half is perceived as a reduction by one quarter ( % in length
X % in width). The distortion is even worse when a three dimensional picture
is used to display a one-dimensional measurement, as is illustrated by the
graph on ‘'The Shrinking Family Doctor' (Note: Both graphs appear in The Visual
Display of titative Information by E. Tufte).

FIGORE 1.7

o
AU B K
S Geaa o

" )

wall L0113 LT

From The wWashington Post, 10/25/1978. Copyright © 1990 The Wwashington
Post. Reprinted with Permission.
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FIGURE 1.7 (cont.)
b)

THE SHRINKING FAMILY DOCTOR
fa Call
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From the Los Angeles Times, 8/5/79. Copyright () , 1979, Los Angeles Times.
Reprinted by permission.

In general, the simpler the visual processing task, the better the eye can
grasp the message. One of the most interesting consequences of this
observationisthatthecc:mnnpiechartshouldahmstneverbeused. In
figure 1.8, both the pie and bar charts give the same information, but most
viewers can much more accurately make the camparisions in the bar chart (a
linear camparison against a fixed baseline) than in the pie chart (an angular
camparison with no fixed baseline).

FIGURE 1.8

Most of the Time, Don't Use Pie Charts

40 4
-
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From “Graphical Perception: Theory, Experimentation, and Application to the
Development of Graphical Methods" by william s. Cleveland and Robert McGill,
Journal of the American Statistical Association, 79, p.533.
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The only advantage of the pie chart is that it makes clear that the individual
pieces total 100%!

High Information Cootent

A good graphic can present an astounding amount of information in a very
clear format. Population density maps, for example, are a kind of graphical
display that visually represent tens of thousands -- or even hundreds of
thousands -- of data points (population, latitude, and longitude at thousands
of locations) on a single page. Indeed, there is probably no better way to
deal with large amounts of information than with a good graphic.

High information content is therefore one of the hallmarks of good
graphical display. Consequently, most of the ink in a graphic should be
devoted to data-information, not to embellishment. One way to measure the
information content of a graph is to measure what proportion of the consumed
ink in a graph is used for data, data-ink. Data-ink is the portion of the ink
that can't be erased without removing information. The ratio of data-ink to
total ink used to print the graph is called the Data-ink ratio:

Data-ink

Data-ink ratio = tor21"Tnk to print the giaph

Itisclearthatasthismtioterﬂstowa.rdlthegmphhasless
embellishment. If the Data-ink ratio is 1, it means 100% of the ink is used
to present data-information and nothing can be erased without losing some
information. This ratio -- originally invented by Edward Tufte (see The Visual
Display of Quantitative Information in the references) -- thus serves as a
useful criterion for determining the information content of a graph.

Other criteria, such as Data Density Index ("the number of numbers plotted
per square inch"), can also be useful in finding how well the allocated space
in a graph is used. However, it is not so important to score high on any
particulariniexasitistormberthatoneofthegreatstrengthsof
statistical graphics is the ability to comvey large amounts of information
that would be indigestible any other way. When there are only a few data
items, a simple table -- or even same words —- may be sufficient. A graph
would be overkill! But when large and camplex sets of data must be understood
and the information they contain cammunicated, there is no better way to do it
than with a graph.

Same Good Graphs

We present here several famous examples of statistical graphs at their
best. These examples are sametimes more camplicated than the ideas presented
in the later chapters of this Guide, but they illustrate what can be done with
imagination and creativity. All of them present a lot of camplex information
clearly. The graphs are attractive and memorable (it is said that Frenchmen

- 15 -
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wept when they saw Minard's graph of Napoleon's retreat), and they represent
both the old and new, spanning over 100 years of excellence in graphical
display.

1. The following graph gives a devastating history lesson: it tells the story
of Napoleon's ill-fated invasion of Russia in 1812 - 1813. The width of the
shaded gray path portrays the size of Napoleon's army at different places
along his invasion route. He started with 422,000 men near the Niemen River
(Polish - Russian border), but lost thousands as he progressed into Russia,
reaching Moscow with only 100,000 men in September.

The dark lower band shows the army's return fram Moscow and is linked to
the temperature on the bottam of the graph. Because it was a bitterly cold
winter, Napoleon lost many of his men due to the weather. As the graph shows,
by the time the troops reach Orscha, the army has been reduced to 20,000. At
Bota 30,000 men joined them. (60,000 men stayed behind in Gloubokoe, and the
30,000 troops that remained of these rejoined Napoleon when he reached Bota.)
The army lost 22,000 men in a disastrous crossing of the Berezina River.
the time they reach the Polish - Russian border, only 10,000 men were left.

Note that data on 6 variables are presented with this graphic: size of the
army, location on a map (2 variables), direction of movement, date, and
temperature. The data-ink ratio is 1. Not a single thing can be erased without
losing information. Few who have seen this graph could forget this history
lesson!

Note: This Graph was originally drawn in 1861 by the French engineer, Charles
Joseph Minard. It has been reproduced many times and in many places. Our
version is taken from p.60 of Introductory Statistics for Business and
Econamics by Thomas H. and Ronald J. Wonnacott, 4th edition. Copyright @
1986 John Wiley & Sons. Reprinted by permission.

- 16 -



e

a Histary Lesson to

FIGORE 1.9

Minard's Famous Graph

Graph of the successive losses of men in the French army in the Russian campaign, 1812-13.
{Prepared by M. Minard, Inspector - General of bridges and roads in retreat)
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2. Consumer Reports magazine uses an excellent graphical approach to depict
auto frequency-of-repair information on 19 variables (17 different systems and
2 indices) over 5-year periods on various models of cars and trucks. The graph
on the next page is self-explanatory. In the magazine, color coding allows
readers to quickly scan the page to pick ocut vehicles that are:

-- much better than average (red filled circle with small white center)
~— better than average (red on the upper half of the circle only)

-- average (open circle)

—- worse than average (black on the lower half of the circle only)

-- much worse than average (all black circle)

Note how the clever use of the white center in the red circle and filled upper
and lower regions for "above" and "below" average,respectively, allows a black
and white version to convey the same information, although not quite as easily
as the color version.
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Choice of Symbols and a Clean Format
y Absarb Frequency-of-Repair Information

FIGURE 1.10
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3. The two "Population Pyramids" that follow campare the United States and
Brazilian population in 1985. They are clever examples of back-to-back
histograms (to be discussed in the next chapter). They provide an enormous
amount of information about each population. For example, we may cbserve the
following:

1. Each small box represents one million persons. By adding them, one
can obtain the male (or female) population of each country for various age
groups.

2. Life expectancy in the U.S. is longer then in Brazil.
3. Females live longer than males.

4. The U.S. shows a "developed nation" population profile: the present
birthrate is lower than it has been in the past, infant and child mortality is
low, and therefore the profile has a large "waist". Brazil, with its high
birthrate and high mortality rate shows the typical undeveloped nation's
pyramid.

FIGURE 1.11

Population Pyramids Show the "Big Picture”

United Slates Age | Birth year Brazil
100 |- 1885
90 -I- 1895
80 -1~ 1905
70+ 1915
60 - 1925
50 - 1935
40 1 1945
3011955
20 - 1965
10 -+ 1975
10 5 0 5 10 0 4900 10 5 0 5 10

Millions Millions

From Introductory Statistics for Business and Economics by Thomas H. and
Ronald J. Wonnacott, 4th edition. Copyright @ 1986 John wiley & Sons.
Reprinted by permission.
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One other popular example of graphical excellence ought to be mentioned--
the weather map in your daily newspaper (of which USA Today's is probably the
best). Take a look at it. Depending on the details, it may contain information
on moisture, temperature, wind speed, barametric pressure, and direction of
movement and type of weather fronts for thousands of locations throughout the
country. Though we take it for granted, this statistical graphic summarizes
thousands of separate weather observations and is a superb example of the
effectiveness of statistical graphics.

Some Bad Graphs

Unfortunately, the previous examples tend to be the exception rather than
the rule these days. The development of camputer graphics tools and the ease
with which data can be gathered and processed has led to an explosion of
graphical display. Sadly, many of these displays are designed more to
demonstrate the cleverness of the artist than to present the information in
the data. As we have stated, the purpose of a statistical graphic is first of
all to inform. The following examples show how a failure to understand and
follow this principle can lead to disastrous consequences.

FIGURE 1.12
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From the New York Times, 8/8/78. Copyright @ 1978 by The New York Times
Company. Reprinted by permission.
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1. Figure 1.12 seems to portray a decline in the commission payments to
travel agents in 1978 for four big airlines: Delta, Eastern, TWA and United.
Only by examining the fine print in the '78 column for Delta, can the reader
(barely) make out that the '78 results are only for a half year. Doubling them
to prov:.de a crude estimate of the whole year's results would show 1978
contmu.l.ng the upward movement fram '76 to '77. This is dishonest graphics at
its crudest.

2. The following graph distorts the relationship between yield and time to
maturity of U.S. Treasury securities. X-axis distance between 3 and 6 month
bond maturities is actually larger than the distance between that of 6 month
and 1 year maturities; the distortion is even worse for longer maturing
securities. As a result, the yJ.eld curve shown gives a campletely rru.slead.mg
impression of how the rate varies with time to maturity. In fact, the rate is
almost constant, not rapidly increasing (the so-called "inversion" of the
yield curve, an important phencmenon).

FIGURE 1.13

The Inconsistent Scale on the X-Axis Distorts the Information

The yleld curve
L G ".\* .: S

‘i ‘ : Traasurnlaldsnn
1 | March2.1990 e
)

“lo

8.‘2‘

3 6 -1 23 .5 710 .2030 . .-

months rs
This chart shows how yiclds compare lw‘l'n-nywnmnuwuh -
maturitics ranging from three mooths to 30 years. !

From Money Magazine, April 1990. Reprinted by permission.
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3. The last graphic appeared in an article syndicated by a national news
service. It violates nearly every principle of good graphical display.

a. The artistic embellishment almost campletely conceals the data . The
purpose is clearly to show off the skills of the artist, not the information.

b. The data-ink ratio is almost zero —- almost all the ink is non-data ink.

c. So little information is presented that a simple table would have
sufficed and been much clearer.

d. There are two different scales (with different scalings!) on the x-axis
so that the relationship between consumer installment and household debt over
time cannot be determined. Moreover, the consumer installment debt is reported
in 1990 dollars, but the household debt is reported as a percentage of
disposable incame. Both should probably have been reported as percentages.

FIGURE 1.14

Consumer Buying, Borrowing Slows

Enormous consumer debt from the 1980s is forcin 1990
cutbacks in new borrowing and buying. 9 19885 $723.7
Consumer Instalimeént Debt 2 Gl

In billions of 1990 dollars  ;g0e

$578.1
/J iz

Housl:.hold Debt »
as a Percentage o
Diaposable Ingomo 8B

From the Newhouse News Service. Reprinted by permission.
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Summary:
What Makes a Good Graph Good and a Bad Graph Bad?

In this chapter, we have presented same of the principles of good
statistical graphics and provided illustrations of both their use and abuse.
Needless to say, there is a lot more to be said on these matters, and, indeed,
research in these areas is ongoing. The references, particularly the works by
Tufte and Cleveland, are wonderful resouces, and we have borrowed fram them
freely. The next two chapters in this Guide also provide further ideas and
illustrations.

We have attempted to show here that graphical excellence is much more than
a matter of applying a few principles and techniques. Rather, graphical
excellence is as much an attitude as it is a set of techniques -- a cammitment
to presenting information in as clear, clean, and honest fashion as possible,
to give the facts and permit the viewer to draw whatever conclusions can be
drawn fram them. The specific principles that we have discussed follow from
this attitude. If, when producing a statistical display, you stop to ask
yourself whether the information is clearly and honestly presented and make
sure that it is, it will be hard to go wrong.
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CHAPTER 2

SIMPLE GRAPHICAL DISPIAYS FOR IOOKING AT BUNCHES OF DATA

by Carol Joyce Blumberg
Winona State University

It is nearly impossible to loock at a list or table of numbers - raw data-
- and make much sense of them. Consider Table 2.1, for example, which gives
heights and weights of same college students (these data were taken from the
1985 Minitab Handbook by Ryan, Joiner, & Ryan, 1985). What is a typical
"average" weight of the males? How spread out are the female weights compared
to the male weights? Unless you are truly remarkable, it will be difficult
just to stare at the data and answer these questions.

TAHIE 2.1

Beights and Weights of 92 College Students
Classified by Gender and Ordered by Height

Males Females
Height Weight Height Weight
66.0 140 61.00 140
66.0 135 61.75 108
66.0 135 62.00 131
66.0 130 62.00 120
67.0 145 62.00 108
67.0 150 62.00 110
67.0 140 62.75 112
67.0 123 63.00 121
68.0 155 63.00 118
68.0 150 63.00 116
68.0 145 63.00 95
68.0 155 64.00 102
69.0 155 64.00 125
69.0 175 65.00 135
69.0 170 65.00 118
69.0 145 65.00 122
69.0 160 65.00 115
69.0 150 65.50 120
69.0 136 66.00 120
69.5 150 66.00 130
70.0 153 66.00 130
70.0 157 66.00 125
70.0 130 67.00 125
70.0 155 67.00 115
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70.0 150 67.00 150
71.0 138 68.00 130
71.0 170 68.00 138
71.0 170 68.00 116
71.0 155 68.00 125
71.0 150 68.00 110
71.0 140 68.00 133
71.5 164 69.00 145
72.0 145 69.00 150
72.0 150 . 69.00 150
72.0 195 70.00 125
72.0 155
72.0 175
72.0 215
72.0 180
72.0 142
73.0 190
73.0 165
73.0 170
73.0 155
73.0 155
73.0 180
73.0 155
73.5 160
73.5 155
74.0 190
74.0 160
74.0 180
74.0 190
74.0 148
75.0 185
75.0 160
75.0 190

What we need are same simple ways to picture how the data are spread out—-
or distributed -~ so we can easily see the answers to these and other similar
questions. That is the subject of this chapter.

Dotplots

A dotplot (sometimes called a lineplot or point plot instead) is probably
the simplest way to picture a bunch of mumbers. It consists of the relevant
portion of a number line on which each data value is indicated with a mark,
typically a dot (hence the name dotplots). For example, here are the lengths
in miles of the world's largest (by area) lakes, ordered by length:
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TRHIE 2.2

Lengths (in miles) of the World's Largest Iakes

Name Continent Length in miles
Caspian Sea Asia-Europe 760
Tanganyika Africa 420
Baykal Asia 395
Balkhash Asia 376
Malawi Africa 360
Superior North America 350
Michigan North America 307
Great Slave North America 298
Aral Sea Asia 280
Winnipeg North America 266
Victoria Africa 250
Erie North America 241
Huron North America 206
Ontario North America 193
Great Bear North America 192

(Source: The World Almanac and Book of Facts 1986)

To make a dotplot for these data, we let the scale on the mmber line range
fram a bit less than 192 (the minimum) to a bit more than 760 (the maximum)
and for each length put a dot in the correct place above the mumber.

FIGURE 2.la:
Dotplot of Lengths of the World's Largest Lakes

120 240 360 480 600 720 840

Ideally, a dotplot should have all the dots spaced out in one horizontal
line, except, of course, when more than one data point has the same value.
But, this is often not possible: the printing device may not be able to put
the dots in exactly the right place (this was the situation above) or the
scale may not have enough detail. In either case, scme piling up of the dots
may be necessary, as in the left hand side above.

An cbservation that is very big or very small to the rest of the
data is called an outlier. For the above data, the length of the Caspian Sea
is an outlier. ILater in this chapter we will discuss ocutliers in more detail.
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The dotplot below gives a dotplot of the lengths of the lakes with the Caspian
Sea deleted from the data set. You can now see more clearly how the lengths
of the rest of the lakes are related.

FIGURE 2.1b:

Dotplot of ILengths of the World's Largest Lakes
with the Caspian Sea (length = 760 miles) Deleted

150 200 250 300 350 400 450

Looking carefully at the display, there appear to be three separate groups
of lakes: three lakes around 200 miles in length, six lakes from 241 to 307
miles, and five lakes that are 350 miles or longer. No further patterns
appear. It is often difficult to see overall patterns in dotplots because
there is so much detail. Although this can sametimes be as advantage, often
less detailed plots, such as histograms, stem-and-leaf displays, and boxplots
allow us to see data patterns better. The remainder of this chapter will
describe how to construct these other displays.

Histograms
A histogram is a bar graph where the frequencies (i.e., number of
occurrences) of data values in certain intervals are represented by the

lengths of the bars. In other words, a histogram puts the data into groups

with the length of the bar for each group proportional to the amount of data
in that group.

The first step in constructing a histogram is to decide the number and
width of the intervals to be used. The intervals should be of equal widths
whenever possible. For any particular data set there are many different ways
of deciding the numbers and lengths of the intervals. No one way is "correct"
== in fact, looking at the data in more than one way is often desirable.
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For example, consider the heights of the males and females cambined in
Table 2.1. For these data, either five intervals each with a length of three,
or eight intervals each with a length of two could be used:

Length 3 Intervals Length 2 Intervals
Interval Frequency Interval Frequency
61.00-62.99 7
61.00-63.99 11 63.00-64.99 6
64.00-66.99 15 65.00-66.99 13
67.00-69.99 28 67.00-68.99 17
70.00-72.99 21 69.00-70.99 17
73.00-75.99 17 71.00-72.99 15
73.00-74.99 14
75.00-76.99 3

The second step is to count the number of data values (i.e., the frequency)
for each interval.

The next step is to draw the bars for each interval with length
proportional to the frequency. If the bars are to be vertical then the
vertical axis indicates the frequencies and the horizontal axis indicates the
intervals. Start the horizontal axis at or near the lowest data value and
choose the scaling so that the data fill up nearly the whole axis. Do not
leave a lot of excess white space. Finally, it is important to clearly label
the axes and give a descriptive title so that the viewer will know exactly
what is plotted.

Same people, and many camputer packages, prefer to make the bars horizontal
(that is, sideways). The intervals are then along the vertical axis and the
frequencies along the horizontal axis.

Figures 2.2a and 2.2b are the campleted histograms (using vertical bars)
for the two different interval widths given above. Which of these is the
better display? Answer: Same people will say Figure 2.2a and same people will
say Figure 2.2b. Neither is right nor wrong. Nevertheless, it is important to
realize that the choice of intervals can make a difference in interpreting the
data. Therefore, it is important to take care in making this choice, so that
the histogram tells an accurate story.
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FIGURE 2.2

Which Interval Length Does Better for the Student Height Data?

a) Length 3
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If the intervals chosen do not seem to portray the data well, (e.g., the
histogram is too spread out or too campact) try a different set of intervals.
The number of intervals is determined by the nature of the data and by the
total number of cbservations in the data set. An often-used rule of thumb is
to have about vn intervals, where n is the mumber of data points. But, this
is not a hard and fast rule. It is a good idea to experiment with different
choices to see what seems to give the best picture of the data.

Sametimes, such as with the height and weight data, the individuals on
which the data are being collected form two subgroups. You can then form a
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histogram using horizontal bars for each group and put them back-to-back.
This is called a back-to-back histogram. For the data in Table 2.1, the two
ocbvious subgroups are the males and the females. Figure 2.3 shows a back-to-
back histogram using horizontal bars for the heights for males and females.
This gives a more camplete picture of the data since the males and females
have different patterns.

See also Figure 1.11 in Chapter 1 for an excellent example of this technique.

FIGORE 2.3

A Back-to-Back Histogram of the Male and Female Student Beights

Height77 (inches)

75
73
71
69
67
65
63

61
T T 1 T | T | 1 | | 1 | T
l6é 14 12 10 8 6 4 2 2 4 6 8 10

FREQUENCY FREQUENCY

There are also occasions when the best way to describe the data is to have
each interval represent only a single data value. In fact, this often occurs
when year (e.g., 1987, 1988, 1989, etc.) is the grouping variable. For
example, this would be the case when naking a histogram of the mmber of
babies who were born each year in a city over a ten-year period.

Histograms can also be made for categorical data (sometimes referred to as
attribute data or qualitative data) such as eye color, favorite music group,
preferred brand of soda pop, or last digit of telephone numbers. Categorical
data are data where numbers or labels are used to sort people or cbjects into
groups or categories. If one wants vertical bars on the histogram then the
vertical axis will indicate the frequencies and the horizontal axis will list
the categories used. Of course, for horizontal histograms, the labelling is
reversed. It is usually wise to put the categories in some logical order.
Mary times the best logical order is by decreasing frequency. In this case,
the display is often called a Pareto chart. Figure 2.4 is a histogram of the
number of AIDS cases reported by state for nine states through 1988. Note how
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clearly ordering by frequency rather than, say, alphabetically, shows the
three distinct groups of states.

FIGORE 2.4

A Pareto Chart is a Histogram Ordered by Decreasing Frequencies

REPORTED AIDS CASES (IN THOUSANDS) BY STATE
FOR THE NINE HIGHEST STATES THROUGH SEPTEMEER, 1988

r 18-
o 16—
g 14—
N 12—
2 10—
o 8-
F oo _
¢ -
s

NN CA FL. N TX IL PA GA M
STATE

An often used variation on the histogram is to use relative frequencies
instead of actual frequencies. The relative frequency of an interval or
category is defined as the number of observations in that interval or category
divided by the total number of cbservations in the data set. These relative
frequencies can be expressed as fractions, decimals, or percents, but percents
seem to be the usual choice. For example, for the height data using length 2
intervals, the relative frequency for the first interval (61.00 to 61.99)
would be 7/92 = .0761 = 7.61% . The histogram using the relative frequencies
would be identical to Figure 2.2b in shape; the only difference would be that
the vertical axis would be labelled by the relative frequencies instead of the
frequencies.
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Outliers

An outlier is any value in a data set that appears to be separated (either
on the low side or high side) from the main body of the data. For example,
for the weight data in Table 2.1, the male who weighs 215 pounds is an
outlier. For the lake length data, the Caspian Sea is an outlier. There are
many different methods that statisticians use to determine which data values,
if any, are outliers. Discussion of these methods is beyond the scope of this
Guide. However, there are several ideas concerning outliers that anyone
analyzing data (graphically or otherwise) should consider.

First, camplicated methods are often unnecessary to detect outliers: they
often stick out like a sore thumb. For example, the 215 pound male is 20
pounds heavier than the next nearest person; the Caspian Sea is almost twice
as long as the next longest lake. So, even if you don't use technical
statistical procedures, you should always check for cbvious outliers.

Second, outliers are often caused by errors made scmewhere during the data
collection, recording, or analysis stages. So always check data carefully for
correctness at every stage. This goes even (same would say, especially) for
data collected directly by camputer.

Third, outliers can influence people's perceptions of graphical displays.
We tend to focus too much on the outliers and not enough on the rest of the
graphic. Hence, in constructing the graphical displays discussed in this and
other chapters, try to make sure that the outliers do not dominate the
graphic. As we saw in Chapter 1 and in Figqure 2.1, one good way of avoiding
this problem is to list the outliers separately and scale the display to the
rest of the data. Comparing Figure 2.la and 2.1lb, it is easy to see how the
outlier distorts the scale and therefore hides detail in the rest of the data.

Of course, sametimes outliers are not mistakes or nuisances, but potential
great discoveries. This is another good reason for loocking at them wvery
carefully and not mixing them up with the rest of the data.

Stem-and-Teaf Displays

Stem-and-leaf- displays are an improvement on the histogram. were
described in John Tukey's (1977) book and subsequently popularized (see, e.qg.,
Velleman & Hoaglin, 1981). Stem-and-leaf displays are similar to histograms
in that they provide a picture of the shape of the distribution of the data.
But, in addition, they allow people to see more details about the data,
because more digits can be retained in the stemand-leaf display than in a
histogram.

When constructing a stemand-leaf display, each of the values for the
variable to be displayed (e.g., the weights in Table 2.1) is divided into two

parts called the stem (the main part) and the leaf (the secondary part). The
best way to illustrate this division is by example. For the weight variable,
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the hundreds' and the tens' digits became the stems and the ones' digit
becames the leaves.

The first step in constructing a stem-and-leaf display is to draw a
vertical line. The stems (e.g., 11, 12, 13, etc. for the weight data) go on
the left hand side and the leaves go on the right hand side of the line. It
is very important to include each possible stem between the lowest and the
highest values of the data, even if there are no data values (leaves) for that
stem. This is because the stems act like the intervals on a histogram and
amitting same of them would give a distorted picture of the data.

The next step is to write down each stem once (on the left) and each leaf
the number of times it occurs in the data (on the right).

The last step is to put an appropriate legend near the display. A legend is
a note that tells the viewer where the decimal point belongs and includes
information on how many significant digits there are in the data. Make sure
the legerd is clearly visible but does not get in the way of the data.

As a first example, the stem-and-leaf display for the weights of the first
15 male students is:

12|13

13)055 LEGEND: 13|5 = 135
140055

15100555

16
17|05

Note that this is nothing more than a sideways histogram in which the
length of the bars is given by the piling up of the data digits in the leaves.
For this reason, it is important to make the leaves (the digits) uniform in
width.

When making a stem-and-leaf, you should first write down the leaves in the
order they appear in the data. DO NOT try to skip around and get them in order
on the stems -- you'll make too many mistakes and it will take too long. After
finishing this preliminary stem and leaf display, it is then almost always
useful to copy the stem-and-leaf display over, this time putting the leaves in
numerical order within each stem. This will be quick and accurate, and you'll
then have neat ordered displays like those that appear here.

The reason for the blank space to the right of the 16 is that none of the
first fifteen students had a weight between 160 and 169. The complete stem-
and-leaf display for all 92 students and a back-to-back stem-and-leaf display
with males on the left hand side and females on the right hand side are given
in Figure 2.5.
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FIGORE 2.5
Stemand-Ieaf Displays of Student Weights
a) All Students Cambined

9|5
10(288
11002556688
1200012355555
13/0000013555688
1400002555558
15]0000000000355555555557
16/000045
171000055
180005
19100005

:

12|3 = 123

21|5

b) Males and Females Separately

MALES FEMALES
9|5 LEGEND: 12|3 = 123
10|288
11002556688
3|12|0001255555
865500 13|0001358
85555200014 (05
7555555555530000000 | 15| 000
54000016
550000 (17
500018
5000019

5|21

Notice that the shapes of these displays are essentially the same as would
be given by a histogram. However the stem-and-leaf displays offers several
important advantages over histograms:

1. The original data can often be recovered from the stemand-leaf display;
with the histogram, they usually cannot.

2. Stemand-leaf displays can show interesting patterns that histograms miss.
For example, the lowest weight is exactly 95 lbs.; there are five people who
weighed exactly 130 lbs., of wham two are male and three are female; most
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interesting of all, almost all weights ended in a 0 or a 5 (only 8 ocut of 57
males and 13 out of 35 females did not). Can you think of a plausible
explanation for this "strange" occurrence?

3. The stemand-leaf display is a quick and easy way to order the data. This
turns out to be useful for further analysis (e.g. with box-and-whisker plots-
-see the next section).

For the height data in Table 2.1, the construction of the stem-and-leaf
display is a bit more camplicated. First, it must be decided which digits are
to form the stems. That is, should the stems be only the tens’ digit or
should the stems be both the tens' and ones' digits? The leaf is then the
next digit to the right of the stem. When doing these displays by hand, all
other digits to the right are ignored. The technical term for ignoring digits
is truncation. We prefer to truncate, rather than round, because it is quicker
and helps us avoid making the errors that often occur when rounding is used.

Let's look at several alternative ways of making a stemand-leaf of the
heights of the 35 female college students. Our first attempt, Figure 2.6a,
uses the tens' digit as the stem and the ones' digit as the leaf. This display
doesn't appear to be very helpful. To improve it, different intervals can be
used. That is, instead of using ten leaf digits per stem, either two or five
leaf digits per stem could be used. If five are used, each ten-digit stem is
split up into two five-digit stems. This is done in Figure 2.6b. The "*" means
that digits 0,1,2,3 and 4 appear as the leaves on that stem; the "." means
that digits 5,6,7,8 and 9 are the leaf digits. This spreads out the display a
bit, but still not enocugh.

FIGURE 2.6

These Stemr-and-Ieaf Displays are too Squeezed
a)

6|1122222333344555556666777888888999  ILEGEND: 6/1 = 61.00 to 69.99
710

b)

6%
6.
7%

1122222333344 LEGEND: 6*|1 = 61.00 to 64.99
555556666777888888999
0
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For our next attempt, we split up each original ten-digit stem into five
stems with two leaf digits per stem. This is shown in Figure 2.7a. At last we
are getting samewhere! The labelling on the stems was invented by John Tukey
and should be read as:

zeros (0's) and ones

twos and threes

fours and fives

sixes and sevens

eights and nines (our alphabetic luck ran out)

e M Hhet O

Finally, if we want still more detail, we can add another digit and
truncate to three digits instead of two. When we do this, we get Fiqure 2.7b,
in which we now have two-digit stems and the leaf digits are either 0,5 or 7
(corresponding to inches, % inches and 3/4 inches). Which of the last two
displays you prefer is a matter of taste; they are both "correct". But you
should campare them to the earlier histograms and note how much more
information they give. Also note the use of a legend to help clarify the
display and,in particular, to let the viewer know where the decimal point
should go.

FIGORE 2.7
More Ways to Spread Out the Stem-and-Ieaf Display of Student Heights
a)

60|11 LEGEND: 60|1
6t (222223333

6£ (4455555

6s(6666777

6.|888888999

70|0

60.00 to 61.99

b)

61(07

62 (00007
63/0000
64 (00

65| 00005
66 (0000
67(000

68 (000000
69 (000
70(0

:

61|7 = 61.70 TO 61.79
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The references listed in appendix 1 contain many examples of stemand-leaf
plots, as well as same further enhancements (the use of depths, for example) .
One very useful variation is a stemand-leaf display where the leaf digits are
replaced by symbols representing different categories. This is sametimes
called an "inside-out plot." For example, for the lake data given in Table
2.2 the lakes are located on three different continents: Asia (for which we
will use the symbol A), Africa (symbol F), and North America (symbol N).
Figure 2.8a gives the usual stem-and-leaf display. Figure 2.8b gives the
stem-and-leaf display when the leaves are replaced by the symbols representing
the different continents (since the Caspian Sea is located in both Asia and
Europe, we have arbitrarily labelled it as being in Asia) . Figure 2.8b shows
that the five longest lakes are located outside of North America, while eight
of the ten next longest lakes are located in North America. Of course this
information is not available fram 2.8a.

FIGORE 2.8
The Inside-out Plot

a) The Lengths of the Largest Lakes

99 IEGEND: 1|9 = 190 TO 199
045689

05679

2

SN W=

b) Replacing the Leaves by the Symbols of the Continents

1| LEGEND: 1|N = A LAKE IN NORTH AMERICA
2 | NNFNAN BETWEEN 100 AND 199 MILES IN IENGTH

3 |NNFAA

4|F A = ASTA

5 F = AFRICA

6 N = NORTH AMERICA

7]a

In summary, the stem-and-leaf display is one of the most useful graphical
techniques available for looking at bunches of data. Sametimes, however, you
have several bunches of data that you want to campare, and too many stem-and-
leaf displays would overwhelm the viewer with information. In such cases ’
what we need is a different way to graphically summarize the data that will
neither overwhelm the viewer with detail, nor lose too much important
information. This is the role of the box-and-whisker plot.
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Box-and Whisker Plots

The box-and-whisker plot -- or "boxplot", for short --is a visual display
of five pieces of information that together give some very useful facts about
a set of data. These five pieces of information are the minimm value, the
25th percentile, the median (which is the 50th percentile), the 75th
percentile, and the maximm.

We shall define these terms in a moment, but we must first warn you that
the above definition is not universal. There are same slight variations that
are often used. The biggest variation is with the use of the maximm and
minimum values. If outliers are present, we usually don't want to plot them on
the same scale as the rest of the data for the reasons discussed previously.
To deal with this, John Tukey, the inventor of the boxplot, developed a
slightly different boxplot procedure in which the maximm and minimm are
replaced, if neces , by essentially the largest and/or smallest noncutlier
values. Exactly what "if necessary" and "nonoutliers" mean are defined in his
procedures. Readers interested in the (fairly simple) details should consult
the references.

The other variation occur in the exact way in which the 25th, 50th, and
75th percentile are defined. However, the various definitions are only
slightly different. These minor differences almost always have no (or only a
negligible effect) on the boxplots. The definitions we have included here are
the ones that most people find the easiest to use.

Now for the definitions. First, the median: the median is the middle value
when a set of numbers is put in numerical order. For example, for the numbers
1, 1, 7, 12, and 13, the median is 7. For the numbers 1, 1, 7, 10, 12, and
13, the middle is halfway between the 7 and 10. For such cases, the median is
defined as the average of the two middle values: (7+10) /2 = 8.5.

The general definition of a percentile is a bit awkward, and we will ignore
it in this Guide. We can, however, easily define the 25th and 75th
percentiles. Basically, the 25th percentile of a bunch of data (often called
the first or lower quartile) can be thought of as that value for which 25% of
the data values are below and 75% of the data values are above. Similarly, the
75th percentile (often called the third or upper quartile) is that value for
which 75% of the data values are below and 25% are above. A simple working
definition is to define the 25th percentile as the median of the data with
values less than or equal to the overall median, and the 75th percentile as
the median of the data with values greater than or equal to the overall
median. Essentially, these are just the medians of the lower and upper halves
of the ordered data.

For the height data for all 92 students, the minimm is 61, the 25th
percentile is 66, the median is 69, the 75th percentile is 72 and the maximum
is 75. For the 57 males the minimm is 66, the 25th percentile is 69, the
median is 71, the 75th percentile is 73, and the maximm is 75. For the 35
females the minimm is 61, the 25th percentile is 63, the median is 65.5, the
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75th percentile is 68, and the maximum is 70. The easiest way to see this is
to construct either an ordered stem-and-leaf display (such as Figure 2.5) or a
dotplot.

Now we are ready to draw a boxplot. We proceed as follows:

l. Draw a number line that contains the range of values of the data from the
minimm to the maximum (or to the maximm and minimm nonoutliers, if severe
outliers are present).

2. Put a small dot just slightly above the number line where the values of the
minimum, 25th percentile, median, 75th percentile, and maximum are located.

3. Draw a small vertical line through the dot for the median; connect the dots
for the 25th and 75th percentiles with a box.

4. Finally, draw dashed lines fram the 25th percentile to the minimm and fram
the 75th percentile to the maximm. These lines are often referred to as
"whiskers". List any amitted outliers separately.

Figure 2.9a gives the boxplot for the heights of all the students. Figures
2.9b and 2.9c give boxplots for male students and female students separately.

FIGURE 2.9
Baxplots of Student Beights

a) All Students

: : : : : | HEIGHT
60.0 62.5 65.0 67.5 70.0 72.5 75.0
b) Males

f f : ¢ t { HEIGHT
60.0 62.5 65.0 67.5 70.0 72.5 75.0
c) Females

f t } t t t HEIGHT
60.0 62.5 65.0 67.5 70.0 72.5 75.0
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Even though it may seem at first that these baxplots give very little help
in interpreting the data, this is not true. They allow you to see patterns
that are not evident from the other displays. For example, fram the boxplots
in Figure 2.9, you can see that the middle 50% (i.e., those students whose
heights fall within the box ) for the females is more spread out than the
middle 50% for the males. It is also immediately clear that 75% of the female
heights are below the 25th percentile for the male heights and that all the
female heights are below the median for the male heights.

Boxplots are particularly useful in comparing many different groups where
the eye would be overwhelmed by the detail of too many stem-and-leaf displays
or histograms. Figure 2.10 is an example. It gives boxplots of average monthly
precipitations for nine U.S. cities (source: 1989 Statistical Abstract of the
United States). By camparing the medians, we can quickly see which cities are
the wettest and the driest. In addition, the lengths of the boxes indicate how
variable (i.e., how spread out) monthly rainfall is and we thus easily can
campare the cities in terms of variation in monthly rainfall. The whiskers
show how variable the wetter and drier months are within each city. Note how
variable Miami is in camparison to New Orleans, even though their median
rainfalls are not that much different. The asterisk in the New Orleans
boxplot indicates that one dry month (October) is very different fram the rest
of the year (i.e., it is an outlier). Finally, the asymmetry in the whiskers
in the Miami and San Francisco boxplots shows that these locations tend to
have rainy seasons -- a few months with a lot more rain than the rest of the
year. For your information, in San Francisco, this occurs in the winter; in
Miami, it is in the summer.
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FIGURE 2.10
Baxplots of Monthly Average Rainfall in Inches for Nine Selected Cities
CITY

Phoenix ==

Reno =1 |||[==

Francisco

Chicago ——— s

Washington - S
D L] c -

Houston — e

Boston — ||

New Orleans E e o

0.0 2.0 4.0 6.0 8.0 10.0

. Although we could have made nine separate dotplots or stem-and-leaf
displays, it is unlikely that we could see as much so easily as we can with

the boxplots. Sometimes by removing information from a graph, more can be seen
than when the information is left in.
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This concludes our brief catalogue of simple displays for looking at
bunches of data. Despite their simplicity, these procedures can produce
attractive, information-rich graphics. They should always be tried when
analyzing and comparing sets of data.

In the next chapter, we'll look at some more sophisticated graphs for
answering another kind of question: how are various measured characteristics
related to one ancther? For a particular example: how are the weights and
heights of the 92 college students related? That is the realm of two (and
more) dimensional scatterplots.
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CHAPTER 3
USING GRAPHICS TO IOOK AT RELATIONSHIPS

by Imnis Sande
Bell Cammmications Research

If you look at the weight and height data for the 92 college students of
the last chapter, it appears that they are related: knowing sameone's height
may tell you samething about his/her weight. So studying the height and weight
of the college students as separate aspects doesn't tell the whole story. The
relationship between them may also be imporant.

The study of statistical relationships reveals same of the structure of the
world we live in and enables us to deal with it more intelligently. How do we
determine what dose of a drug is effective? Does it make any difference
whether we are dealing with an adult or a baby? How does a designer of
ready-to-wear clothing patterns know how to change the pattern to accammodate
different sizes? Is a person who weighs 140 lbs overweight?

Observed relationships may suggest that X causes Y, either directly or
indirectly: as you increase the amount of fertilizer in a field, the plants
grow taller, but if you add too much, they die. There may be a mutual
dependence on other factors, such as that of height and weight on our genetics
and diet. The maximm daily temperature varies in a predictable way depending
on the time of year, as does household usage of electricity. This enables us
to know what clothing to take on our vacation or make a good quess at what the
electricity bill might be next month.

Of course, we can think of lots of good reasons why height and weight are
probably related. But how about height and I.Q. scores? Does knowing
someone's height tell you anything about their I.Q. scores - or how well they
will do on a math test? 1It's doubtful, but it would certainly be very
interesting if it were so.

Rather than guess at the answers, we should turn to more scientific methods
of finding out, and the easiest and most obvious method is to collect data and
take a look at them.

Scatterplots

Once we know the I.Q. score and height for all the students in a class, we
can plot them on same graph paper, using height as the x-value (horizontal
distance) and I.Q. as the y-value (vertical distance). This type of graph is
called a scatterplot. Each individual gives us a point on our plot (a height
and I.Q. value), and the result might be samething like Figure 3.la. If we
look at Figure 3.la, we see that knowing that samecne is relatively tall tells
us nothing extra about his/her I.Q. Tall people and short people in this group
have similar I.Q.'s. That is, there appears to be no relationship between
height and I.Q.

- 44 -




I. Q. Score

120

115

110

105

100

95

90

85

Figure 3.1: Showing Relationships through Plots

3.1a. No Relationship

1 1 1 1
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1.Q. Score Plotted against Height
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3.1b. Obvious Relationship
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F 1 1 1
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60 65 70
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Weight Plotted against Height for a Mixed Class
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This does not make this scatterplot useless and uninteresting. It is not
hard to think of examples where the existence of no relationship between
variables may be extremely important. To give just one, if the dosage of a
proposed new drug was plotted on the x-axis and the percentage of people
treated with it who suffered a bad side effect was plotted on the y-axis,
seeing no relationship (at least over the range of dosages that would be used
in practice) is exactly what the drug manufacturer would like to see. That
would be evidence for the safety of the drug.

By contrast, if we collected the height and weight for a (different) group
of people we might get a plot like Figure 3.1b. In this plot, measurements
from males are plotted with M's instead of *'s, and measurements fram females
are plotted as F's. It is fairly cbvious that not only does weight generally
increase with height in this group, but males are generally heavier and taller
than females. It is important to remember that the conclusions one might draw
fram a scatterplot apply only to the group represented by the individuals in
the plot and that the same data plotted for different groups may result in
different-locking plots. Try making the same kind of plot for the
height/weight data in Table 2.1. Does it look the same (be careful with the
scaling!)?

Now let's look at the relationship between the population and the number of
autamobiles for the 50 states and the District of Columbia in 1988. These
data are represented in Figure 3.2a. Clearly there is quite a strong
relationship between the two quantities. Which are the states with the
largest populations and mumbers of autos? In Figure 3.2b, instead of each
state being represented by a star, a two-letter abbreviation has been used
instead. Here it is easy to see that California is the most populous state in
terms of both people and autos, and that New York,Texas, Florida, Ohio,
Illinois, Pennsylvania, Michigan and New Jersey are next. Smaller than that,
it is not possible to distinguish the individual identifiers; in fact, the
plot looks like a mess and making the letters smaller is not going to help.
The solution may be samething like Figure 3.2c, where only the states with
populations over 10 million or more than 7 million autos are represented by
letters and the rest are plotted as circles.

Although Figures 3.2a-c show us the large-scale relationship between
numbers of autos and population, we essentially end up drawing conclusions
based on the largest 9 states because they dominate the plots. If we want to
look more closely at the 42 smallest states, we have to do samething else.
One option is to plot the data for the remaining 42 states, but before we do
anything, let's take a loock at the one-dimensional distributions of population
and autos separately.
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Figure 3.2: Relating Autos to Population

3.2a. Plain Scatter Plot
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These are stemand-leaf plots of the populations of people and autos of the
50 states and DC:

People Antos

Millions Hundred-thousands Millions Hundred-thousands

0 455667788999 0 233344446666778889

1 013569 1 0357888

2 3456799 2 000245578888

3 01179 3 34567

4 1122679 4

5 35579 5 06

6 6 34

7 4 7 2

8 8 388

9 37

10| 8

11| 49 Too high: 16.473m

12

13

14 2

Too high to include: 17.558m
23.668m

It is easy to see that both variables are quite skewed toward the smaller
values. Simply deleting the largest values would not remove the problem - it
would just change the scale. This kind of problem is usually solved by
transforming the data. This means that, instead of plotting x, one plots f(x),
where f is same convenient function that (in this case) spreads out the small
values and squeezes the big ones. A function frequently used for this purpose
is the log function. This is the same idea that was used in the plot of stony
meteorite data in Chapter 1, Figure 1.3.

If we take logarithms to the base 10 of both populations and numbers of

autos, the resulting stem-and-leaf plots (of the first two significant digits,
with 2 different leaf values on each stem) look like this:

- 48 -




Logjg(Population) Logi o (Autos)

2 | 677 2 | 4455

2 | 888899 2 | 66667

3 | 000011 2 | 888899999
3| 223 3|01

3 | 4444455555 3 | 223333333
3 | 666666777777 3 | 44444444555
3 | 889 3 | 6677

4 | 00011 3 | 889999

4 | 22 4

4 | 4 4 | 2

The transformed data are now more evenly spread out and more symmetrical
than the original data.

If we now scatterplot the transformed data, we get Figure 3.2d. Here the
points are quite well separated and California is not as far from the rest as
it looked in Figures 3.2a-c. The relationship between population and number
of autos by state is very clear.

Fitting a Prediction Line to the Plot

Suppose a new state were to be created -—— for example, California or New
York might be chopped in half. Could we then predict the number of autos the
new state would have? Based on the plots in Figure 3.2, it looks as though it
should be possible to predict quite well. The data look as though they lie
very close to a straight line. If we can draw a line which represents or
summarizes the data well, we simply use the line to “"predict" the y- value
(number of autos) corresponding to a given x-value (population).

In Figure 3.3a, a line that seems to fit the data well has been drawn "by
eye" with a ruler. For data such as we have here, an informal procedure like
this suffices. Often, however, the relationship obviously exists, but it is
less cbvious where to put the ruler. Then we need a more cbjective method of
drawing lines. It turns out that there are lots of such methods fram which to
choose.
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Figure 3.3: Relating Autos to Population (cont.)
Fitting Straight Lines and Plotting Deviations
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Methods of "fitting" lines (i.e., identifying "good" lines) to data vary in
degree of sophistication. Here we will consider a very simple method, the
median method, which will usually give a reasonable-looking line.

In the last chapter, the median of a group of numbers was defined as the
middle value when they are arranged in order. The median is often used as a
representative value for a set of values, in much the same way as an average.
However, with a median, we know that it divides the data in half, whereas the
average does not (except, sometimes, by accident).

To use the median method of fitting straight lines to (x,y) data like
populations and autos proceed as in the following example:

Suppose, to keep the numbers simple, that the camplete data are
x-values 1 2 3 4 5 6 7 8 9 10
y-values 3 1 4 2 5 8 6 4 7 5.

In other words, the cbservations are (x=1,y=3), (x=2,y=1), and so on.

l. Order the x-values.

2. Split the ordered x-values into three equal or nearly equal groups. For
the above example (where the x-values are already ordered), 1 234 5 6 7
8 9 10 might be split into 12 3, 456, and 7 8 9 10.

3. Calculate the median of the x-values for the smallest and largest groups.
For the example above they would be 2 and 8.5.

4. Now calculate the medians of the groups of y-values corresponding to the
smallest and largest groups identified in step 3. In our example, the
y-values corresponding to the smallest group of x-values are 3 1 4 and
their median is 3, while the median y for the largest group is 5.5

5. Estimate the slope of the line as
b = Difference between the median y's/Difference between the median x's.
In the example we would get (5.5 - 3)/(8.5-2), or 2.5/6.5 = .38.

6. Estimate the intercept of the line as

a = median of the values (y - bx)
(The rationale for this is that, if we have a bunch of (X,y) pairs, each
of which is supposed to lie approximately on the line y = a+ bx and if we
know b approximately, then each pair gives us an estimate of the value of
y - bx = a. A central value for these numbers gives us a better overall
estimate of a.)
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In the example, these values (corresponding to the ordered x-values above)
would be 2.62, 0.23, 2.85, 0.46, 3.08, 5.69, 3.31, 0.92, 3.54, 1.15, and
their median is 2.73.

7. Draw the line y = a + bx through the points on the scatterplot.

It is possible to refine this method somewhat, but this is enough to
understand the principles without getting bogged down in details.

In Figure 3.3b, the line drawn by the median method does not appear to
differ much from the by-eye line drawn in Figure 3.3a. The two lines are very
close, in this case, but they are not the same. (In case you're wondering, we
prefer to use medians rather than averages because they are less sensitive to
outliers. 1If, in step 4 above, the y-value corresponding to x=9 were 19
instead of 7, the median y for that group would not change, but the average
would change considerably. Try it.)

The fitted line can be used to predict a y-value for every x-value.
(Statisticians often use the word “"predict" to mean "make an intelligent guess
at, based on related information.") If we invent a new state with population
P and we want to predict A, the corresponding number of autos, we can put
x=logo(P) and read off the line (or from its formula) the corresponding value
of y=logjg(A). The predicted value of A is then 10Y.

For example, fram Figure 3.3b, if a new state had a population of P =

1.995262 million, logjp(P) is 6.3. The formula for the fitted 1i is
logip(A) = =.2 + logig(P). Logjg(A) is then =.2 + 6.3 = 6.1 and 10°-! is
1.258925 million. So we can prec?_l.ct that our new state will have about 1.26

million autos!

Although we actually know the number autos in each state, we can still use
the fitted line to "predict" them from the state populations. We would like to
campare the predicted number of autos with the actual number to see how good
the fit is. Figure 3.3c is a plot of the difference between the actual value
of logjp(autos) and the value predicted fram the line fitted by the median
method against logjg(population). That is, we have plotted

(actual - fitted)logjg(autos) on the y axis
vs.
logjg(population) on the x-axis.

( Note that we have changed the y-axis scale from the previous plots to show
these results clearly.)

This is a plot of “"error of prediction" vs the log population to see how
well we predict over the entire population range and whether we have any
systematic errors over that range. The plot also shows us how much variation
in the 51 values of logip(autos) is left over after we have removed the
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variation accounted for by logjg(population). The dotted line indicates zero
deviation from the predicted number of autos (perfect prediction).

Figure 3.3d is the same plot as Figure 3.3c, but with the individual |
states identified. We see that Florida has relatively more autos for its
ation size than any other state (actual - fitted is large), while DC has
the smallest number of autos relative to size; if DC is excluded (it's not
really a state), West Virginia and Arkansas have the next smallest number of
autos relative to size.

We have seen that, not too surprisingly, population size does a pretty
good job of explaining the number of autos in each state. Sametimes the
addition of another variable can do more explaining. Let us try to explain
the difference between the actual and predicted numbers of autos that we
plotted in Figures 3.3c and 3.3d by introducing a new variable, average (i.e.
per capita) income by state, for 1988.

Again, the distribution of average incame across states is quite skew (can
you explain why?), so we use logjg(incame) instead. Figure 3.4a plots the
differences between the cbserved number of autos and the number predicted fram
population size alone against logjp(incame). Each state is identified. The
plot shows same trend, although not as sharp as that in Figure 3.3a. In other
words, it appears that as per capita state incame increases, the actual number
of autos tends to exceed that predicted by state population alone more and
more. This sounds reasonable.

In Figure 3.4b, a median straight line is fitted to these data, and it
exhibits a gradual upward slope. In Figure 3.4c, new deviations have been
camputed from the new fitted line and plotted against incame and the
individual states identified. DC stands out as havmg a relatively small
number of autos for its population size and average incame. The "real" states
are quite camfortably clustered about the zero deviation line. Average income
does seem to account for same of the variation remaining after taking out that
due to population size.

This technique of fitting a line and using the deviations as y-values for
fitting a new line with new x-values only works if the new x-variable is more
or less unrelated to to the original x-variable -- in this case, if incame is
unrelated to population size. Figure 3.4d is a plot of 1og10(1_m:cm=_-) against
loglo(populatlon) , and it does not appear that any relationship exists. In |
this case, we can actually translate the prediction lines fram the graphs
directly into an equation that expresses the relat:.onshlp of (the logs of)
number of autos to both population and per capita incame simultaneocusly.

It turns out that this can be done with even more x-variables (maybe we
should add size of the states) and even if the x-variables are related.
However, the techniques for doing this are beyond what we can discuss here.
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Observed minus Fitted Log Autos

Deviations from New Fit

Figure 3.4: Relating Autos to Population (cont.)

Explaining the Deviations from the Fit

3.4a. Deviations from Fitted Values
Plotted against Average Income
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3.4b. Deviations vs. Average

Income, with Fitted line
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Time Series Plots

Frequently data consist of a series of cbservations taken over time. For
exanple, one might be interested in the daily maximum temperature or the
monthly rainfall over several years. Data such as this is the basis for our
knowledge of the weather in different parts of the world and how the climate
is changing. If you plotted the monthly rainfall in your hame town every
month, what do you think the plot would look like over one year? What would
it look like over 5 years? What would a very wet year look like campared to a
very dry year? What would you expect the plot to look like if the rainfall
were decreasing over many years?

Data cbserved over time are referred to as Time Series. It is often the kind
of data we collect when we are monitoring something, such as rainfall, the
price of gas or the unemployment rate. Data on weather, retail sales, prices,
and so forth often exhibit interesting annual patterns, which we call cycles.
Sunspots exhibit longer cycles. Our brains exhibit electrical activity with
very short cycles. Time series data does not have to exhibit cycles to be
interesting. The population of the United States increases over time, as does
its consumption of energy. What will the population of the United States and
its energy consumption be in the year 2050? While the proportion of deaths
every year due to respiratory disease has been decreasing since the beginning
of the 20th century, the proportion due to cancer has been increasing.

Unfortunately, we will not be able here to lock at same of the "more
interesting" series, simply because they tend to be very long and the
techniques for looking at them are quite complex. However, to give you an
idea of how we might think about a time series, we use a simple example.

Figure 3.5a shows plots of Men's and Wamen's Olympic times for the 100
Meter Freestyle swimming event. The Olympics occur roughly every 4 years (the
first few since 1896 were more irreqular and there were no Olympics in 1916,
1940 or 1944). The Men's Freestyle event has been held since 1896, while the
Waren's event was first held in 1912. The two plots are different. Men
obviously swim the 100 Meters Freestyle faster than women do, but it is hard
to say how much faster.

Are the women closing the gap? To examine this issue we might lock at the
difference between men's times and wamen's times, or the ratio of the two.
Figure 3.5b shows the ratio of women's to men's times for the 17 years in
which both men and women campeted. The points are quite irregular, but they
do suggest an increasing trend. However, it is impossible to guess from this
plot whether the women are closing the gap or whether, in the long run, the
ratio of men's times to women's times will flatten cut at same limit which is
less than 1.0.
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Figure 3.5: Exploring Time Series

3.5a. Two Time Series Plots
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3.5b. Deriving a New Plot
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In order get a better picture of the trend, we can try connecting the
successive points of the plot. This is shown on Figure 3.5c. A jagged plot
emerges which helps samewhat, but does not really solve our problem. We need
to fit a curve to smooth out the plot. We prefer a curve because fitting a
straight line seems inappropriate due to the definite curvature.

In order to produce a smoother version of Figure 3.5b, we shall again use
a median procedure to fit smoothed values. This time the "x-values" are the
time values: 1912, 1920, etc., and the "y-values" are the corresponding
ratios: .77, .81, etc. Our smoothed y-values are produced as follows:

1. Group the ratio data into overlapping groups of three by sliding a
"window" of width 3 along the data.

In this example, the lst group is (.77, .83, .81), corresponding to
(1912,1920, 1924); the 2nd is (.83, .81, .83), corresponding to (1920,
1924, 1928); the 3rd is (.81, .83, .87), corresponding to (1924, 1928,
1932) and so on down to the last group of (.92, .89, .89), corresponding
to (1980, 1984, 1988).

2. The smoothed value corresponds to the middle time period of each group
and is just the median value of the y-values for that group. Note that
this means that there is no predicted value corresponding to the very
first and very last value in the time series.

The medians of the above groups in the example are .81, .83, .83, down to
-89. These are the smoothed (or fitted) values corresponding to .83, .81,
.83, down to .89 (the second-to-last value).

The camplete results are:

Year Ratio Median
Men/Waomen (3-point)

1912 0.77

1920 0.83 0.81
1924 0.81 0.83
1928 0.83 0.83
1932 0.87 0.87
1936 0.87 0.87
1948 0.86 0.86
1952 0.86 0.86
1956 0.89 0.89
1960 0.90 0.90
1964 0.90 0.90
1968 0.87 0.87
1972 0.87 0.87
1976 0.90 0.90
1980 0.92 0.90
1984 0.89 0.89
1988 0.89
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In short, the smoothed value for 1920 is the median of the 1912,1920 and
1924 observations, the predictione for 1924 is the median of the 1920, 1924
and 1928 observations, and so on.

These predicted values are plotted in 3.5d. If we took 5 points in each
window instead of 3 points (the number of points is up to us), a slightly
smoother curve would result, but there would be two fewer points (we'd have no
predicted values corresponding to the first two or last two points) . This
method is particularly appropriate for time series where we expect to see
(say) annual or weekly cycles (or patterns) and we are interested in the
cyclic structure of the series. Using a camputer, it is very easy to try
different window widths and explore the results.

Of course, just as with the median line fitting procedure, we can and
should look at the errors of prediction to see what more might be learned. For
example, we might want to plot these errors against same other "explanatory"
variable to see if the remaining variation can be explained.

If we are just interested in trend and want to fit a curve to the data in
order to get a better idea of where it is going, we can divide the data into
(say) 4 adjacent segments of roughly equal numbers of points, and plot the
mean (or median) y-value (ratio of men's time to women's time) vs. the mean
(or median) x-value (time point). The 4 plotted points are then joined and
the result is shown as the solid line in Figure 5d. It appears smoother than
the dotted line not because it is better, but because fewer points are used,
so that much of the variation between successive Olympics is ignored. Fram
this trend line, it looks as if the ratio of men's to wamen's times is
flattening out at about .9; i.e., the time made by the men will, in the long
run, fall roughly 10% short of the time made by the women in the Freestyle.

Of course, we can never be certain about such a prediction. Future
breakthroughs in wamen's athletic training might ennable them to jump to 95%
or better, for all we know. This illustrates another problem: it is dangerous
to predict outside the range of the datal! Nevertheless, based on the
information we have thus far, this seems to be a reasonable conclusion.
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Summary

In this chapter, we have used variations on the scatterplot to study
relationships among variables. Although these graphs can be drawn by hand for
small amounts of data, when dealing with larger amounts, it is almost always
necessary to have a camputer and software so that different kinds of plots can
be quickly and easily explored. This kind of interactiwve graphical exploration
of data is rapidly growing as new camputer hardware and software become
available (and get cheaper!).

The plots in this chapter are samewhat different than those in Chapter 1.
In Chapter 1, we were largely concerned with plotting data to cammnicate what
we_had learned in a clear and honest fashion. Here, and also in Chapter 2, we
were more concerned with plotting the data to learn what we must cammunicate.
Both modes of graphical use are important, and the techniques for each
certainly overlap.

We hope that this Guide has shown you how statistical graphics can help you
better understand and cammnicate about the world around you. As we said in
the introduction, quantitative literacy is important in today's data-driven
world, and graphics is a vital aspect of quantitative literacy.

The annctated reference list that follows will allow you to find out more
about statistical graphics. We hope that you will continue to enjoy
statistical graphics, and that this introduction has helped you to better
understand this important and growing area of knowledge.
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APPENDIX
A HRTEF ANNOTATED REFERENCE LIST FOR STATTSTICAL GRAPHICS

The following list of references is designed to provide readers asking the
question, "But where do I go to learn more," an answer. It is not meant to be
exhaustive and, in fact, many useful topics are not covered here.
Nevertheless, it should provide a reasonably camprehensive list to begin.

On the whole, no previous background is required to understand these works,
though a bit of intellectual effort and perserverence may be required for
same.

Boardman, T.J., (1985), "The Use of Simple Graphics to Study Hourly Data with
Several Variables," in Experiments in Industry, Snee, R.D., Hare, L.B., and
Trout, R.J. (Eds.), 127-142, available from the American Society for Quality
Control's Quality Press.

-- This article may be hard to get, but it's worth trying. It shows how
graphics can be used to analyze camplex air pollution data and may provide
good ideas for those interested in the statistical graphics poster
campetition. No special technical expertise is required to understand the
article.

Cleveland, W.S. (1987), "Research in Statistical Graphics", special section on
Statistical Graphics in (Journal of the American Statistical Association), 82,
419-423.

—- This article forms the introduction to a section on statistical graphics
that includes several (mostly advanced) articles on statistical graphics.
However, the article itself provides many references and is written at a basic
level accessible to those without special knowledge. It's an excellent
resource for those wishing to learn more about statistical graphics.

Cleveland, W.S. (1985), The Elements of Graphing Data, Monterey, CA:
Wadsworth.

-- Gives a fairly elementary discussion of many important issues including
scaling, choice of symbols, and how to do multiple graphs without confusion.
The book also discusses results of psychological research on how people
perceive graphics and uses these results to develop better ways to do same of
the most commonly used graphs. Profusely illustrated with many examples, it is
highly recammended reading.
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Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. (1983),
Graphical Methods for Data Analysis, Boston: Duxbury Press.

-- A fine introduction to many modern topics in graphics, data smoothing,
and camputer approaches to data. This is a samewhat technical exposition, so
mich of it may be inappropriate for the beginner. Nevertheless, for the
curious, it provides a nice exposition of same of the issues in modern
statistical graphics. It also has lots of nice examples that can often be
followed even without much technical knowledge. The "Further Reading" sections
of each chapter are also useful for those seeking to learn more.

Department of Mathematics and Camputer Science, North Carolina School of
Science and Mathematics (1988), Data Analysis. Available from National Council
of Teachers of Mathematics, 1906 Association Drive, Reston, VA 22091.

—— This book was written by high school teachers for high school students.
It covers many of the topics in Chapters 2 and 3 of the gquide, as well as
others not included there. It contains excellent step~by-step descriptions for
making the various displays and cames with a camputer diskette.

Ehrenberg, A.S.C. (1982), A Primer in Data Reduction, Chichester: John Wiley
and Sons.

—— Strictly speaking, this is not a book on statistical graphics, but an
introductory statistics textbook that contains same good graphical examples.
However, Part V of the book (titled "Cammnicating Data") consists of four
short chapters on "Rounding", "Tables", Graphs", and "Words" that contain much
good advice on how to cammmnicate about data. The section on tables is
especially valuable.

Huff, D. (1954), How to Lie With Statistics, New York: Norton.

= A classic. It discusses the mistakes and misinterpretations that can be
made (sametimes deliberately!) with graphical displays. It is easy to read,
yet makes many important points. The entire book can be read in a couple of
hours!

Landwehr, J.M. and Watkins, A.E. (1986), Exploring Data, Palo Alto, CA: Dale
Seymour.

—- This is one of the books in the Quantitative Literacy series, written
for junior high and high school students. It provides clear directions for
making and interpreting stem-and-leafs,boxplots, and scatterplots. It also
contains lots of good examples and datasets.

Tufte, E.R. (1983), The Visual Display of Quantitative Information, Cheshire,
CT: Graphics Press.
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-- A masterpiece!l A beautifully illustrated, delightfully written
exposition on graphical style. If you can only read ("look at" may be a much
better phrase) one book, this is it. It is written for a general audience, so
that no technical expertise is required. Yet it is full of wonderful advice
and examples. Many of the ideas — and same of the examples —- in Chapter 1
came fram this book.

Tufte, E.R. (1990), Envisioning Information, Cheshire, CT: Graphics Press.
== This book has a much broader scope than Visual Display. However, it is

full of interesting pictures, and might suggest ideas for the poster
campetition.

Tukey, J.W.(1977), Exploratory Data Analysis, Reading, MA: Addison-Wesley.

— This is a path-breaking work that expounds the philosophy of
"exploratory" -- as opposed to “confirmatory" --data analysis. Many of the
techniques introduced here are now firmly established standards in the modern
data analytical toolkit. Tukey has an unusual writing style that makes the
reading heavy-going at times, but it's worthwhile loocking at some of the
examples if you are interested in how some of the techniques came about. Also
discussed here are more sophisticated versions of the median line fitting and
medians of three time series smoothing techniques discussed in the Guide.
Tukey does everything by hand, so the reader can follow along (if he has the
staminal). There are also loads of interesting datasets in the exercises.

Velleman, P.F. and Hoaglin, D.C. (1981), Applications, Basics, and Camputing
of Exploratory Data Analysis, Boston: Duxbury Press.

-— This book is essentially a translation of Tukey's book into a

and form that make it more accessible to the "ordinary" person. Although some
technical matters requiring formal knowledge of statistics are discussed,
there are also good discussions of boxplots, stem-and-leafs, smoothing and
line fitting procedures, and so forth. The book also contains BASIC and
FORTRAN listings that should ennable an ambitious student to get a computer to
implement most of the techniques (however, cammercial software is available
that does everything, too).

Wainer, H. (1984), "How to Display Data Badly, The American Statistician, 38,
(PP.) -

-- Wainer is a colleague of Tufte's. This article is a funny discussion of
many horrible examples of graphics in order to show what good graphics should
be like. Many of Tufte's ideas and examples are in here, and the article
itself is suitable for anyone. It's hard to believe that any article in a
statistics journal could make you laugh out loud, but this one can!
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